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Meteorological extremes

This entry discusses briefly basic principles of
extreme value (EV) estimation (see Extreme
value analysis), the role of simulations for the
development of relevant meteorological data sets, the
interaction between the practical application of the
meteorological data and the extreme value modeling
process, and specific EV estimation issues pertaining
to wind, snow, ice, and ocean waves. Modem
treatments of EV theory are covered in detail by
Castillo [5] and Beirlant et al. [4].

Epochal and ‘Peaks-over-threshold’
Approaches: Extreme Value Distributions

Classical results on EVs were obtained by Fréchet
[10], Fisher and Tippett [9], Gumbel [13] and
Gnedenko [12] for sets of epochal values. These
consist of the extreme value for each of the equal
periods, or epochs, into which it is reasonable to
divide a stationary time series. The time series is
referred to as the parent population of the extremes.
For meteorological data it is common to avoid sea-
sonal effects by considering one-year epochs. For
asymptotically large values, depending upon the dis-
tribution of its parent population, a population of
statistically independent EVs is described by one of
only three possible distributions: EV type I (Gum-
bel), EV type II (Fréchet) and EV type III (reverse
Weibull) [12] (see Generalized extreme value dis-
tribution). The application of these distributions to
recorded data such as annual meteorological maxima
yields EV estimates that are approximate in so far
as, by definition, real data do not satisfy the theo-
retical requirement that they be asymptotically large.
Nevertheless, it appears that estimates of meteorolog-
ical extremes based on EV theory are reasonable by
and large.

In the more recently developed peaks over thresh-
old (POT) approach (see Exceedance over thresh-
old) the EV set consists of all independent values of
a stationary time series that are equal to or exceed
a sufficiently high threshold. For any meteorological
record, a POT set with threshold equal to the smallest
value of the corresponding epochal data set—that is,
a POT set comparable with the epochal set in terms
of the magnitude of the extremes—has the advantage

of being larger in size than the epochal set. Consider,
for example, two years in which the observed wind
speeds equal to or larger than 33 ms~! are 34ms~1,
36ms™! for the first year and 33ms™! for the sec-
ond year. In the epochal approach the two-year data
set is {36ms"1, 33 ms_l}; in the POT approach, for
a 33ms~! threshold, it is {34ms~!,36ms™1,33
ms~!}. Increasing a POT data set by decreasing
the threshold results in the inclusion of data points
so small as to violate unacceptably the assumption,
inherent in EV analyses, that the data are asymptot-
ically large. Conversely, thresholds that are too high
result in small data sets and, therefore, large sampling
errors. In practice a sample size is judged to be sat-
isfactory if the estimates do not vary significantly as
the sample size is increased (or, equivalently, as the
threshold is decreased). As is the case for epochal
sets, the distribution of POT sets can be shown to
approach asymptotically one of the three EV distri-
butions [5].

A meteorological time series generally includes
data of distinct physical origins, some of which
may be irrelevant from an EV viewpoint (e.g. for
a parent population consisting of daily maxima,
morning breezes as opposed to thunderstorm winds).
In practice a parent population that may be used as
a theoretical basis for the selection of an EV model
may therefore be impossible to define.

In some climates where the meteorological quan-
tity of concern (e.g. the wind speed) can be associated
with distinct types of meteorological phenomena (e.g.
thunderstorms and tropical cyclones), it is reason-
able to model that quantity by a mixed distribution
consisting of a weighted sum of EV distributions.
Each distribution corresponds to a distinct meteoro-
logical phenomenon, and its relative weight is esti-
mated as the ratio of the number of EV data asso-
ciated with that phenomenon to the total number of
EV data.

Sampling Errors and their Reduction

Inherent in EV estimates are sampling errors due to
the finite size of the data samples. The estimated
standard deviation of the sampling error is a function
of probability distribution, and is proportional to the
estimated standard deviation of the EV sample and
inversely proportional to the square root of the EV
sample size.
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In general, the most appropriate probability dis-
tribution of the population from which an EV
record is drawn cannot be determined confidently
from the analysis of that record alone. Owing to
sampling errors, a sample that belongs to an EV
population whose true distribution is say Gum-
bel may be fitted best by a reverse Weibull or
a Fréchet distribution [21, 23]. This important
fact, which can be verified easily by Monte Carlo
simulations (see Simulation and Monte Carlo
methods), has been overlooked by some statisti-
cians [11].

The unfavorable effect of sampling errors on the
selection of the appropriate EV distributional model
can be reduced by considering a sufficiently large
number of meteorological stations with data records,
provided that these are (a) mutually independent
and (b) meteorologically homogeneous (i.e. generated
by the same type of meteorological phenomena:
nonhurricane winds for all stations, as opposed to
nonhurricane winds for some stations and a mixture
of nonhurricane and hurricane winds for others).
If the numbers of station records best fitted by
EV I, EV II and reverse EV III distributions are
roughly proportional to the numbers of samples of
the same size generated by Monte Carlo simulation
from say a reverse EV III population, then it is
reasonable to conclude that the true distribution for
most stations under consideration is reverse EV Il
with, in general, parameters that may vary from
station to station.

Given the most appropriate distributional model,
it is possible in principle to reduce sampling errors
in the estimation of the distribution parameters by
using the ‘superstation’ approach, where mutually
independent records of neighboring, meteorologi-
cally homogeneous stations are consolidated into
a single record. Independence can be difficult to
verify for records of peak gusts, as opposed to
records of sustained wind speeds. This is due to
the strong spatial variability of peak gust speeds
corresponding to a given sustained wind speed.
That is, at any given time, two stations for which
the respective sustained speeds are the same can
have significantly different peak gust speeds, lead-
ing to the illusion that the two stations’ records are
independent.

Formal statistical methods for using spatial infor-
mation to reduce sampling errors are described by
Coles [6].

Estimates Based on EV Data Generated by
Simulation

For certain meteorological quantities the number of
direct observations is inadequate, and EV estimates
must be obtained from larger sets of data generated
by simulation. Simulations use historical information
physically related to the quantity of interest and
physical models that transform the information into
directly usable data. For example, for hurricanes the
requisite historical information consists of data on
the pressure defect at the storm center, the radius
of maximum wind speeds, the hurricane translation
velocity, and the hurricane path, for each of a large
number of hurricanes [3, 20, 24, 25]. In ocean
engineering so-called hindcasting methods that use
physical models of storms and of the waves they
generate are based on the same principle. Hindcast-
based estimates of wave characteristics are usually
limited to mean recurrence intervals of 100 years or
less; estimates for longer intervals, though needed
for the estimation of safety margins with respect to
structural collapse, cannot in general be obtained with
any reasonable confidence owing to typically large
observation, modeling and sampling errors.

Sampling errors inherent in estimates based on
simulated data can be estimated by numerical sim-
ulation [2].

Dependence of Modeling Process on Type
of Application: Examples

The type of application for which meteorological data
are used may influence the EV modeling process.
For example, in structural engineering applications
wind speeds are commonly used to estimate wind
effects, such as pressures, which are proportional
to the squares of the wind speeds. It has been
argued that more precise estimates of extreme wind
pressures may be obtained by assuming that it is the
squares of the wind speeds, rather than the wind
speeds themselves, that are appropriately modeled
by an EV distribution [18]. However, this argument
presupposes a type of parent population distribution
whose validity remains to be established.

A second example involves the dependence of
wind effects on structures upon wind direction. Until
recently this dependence was not accounted for
explicitly in standard provisions. To account for wind
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direction, the largest wind speed from each main
compass direction (e.g. N, NE, E, SE, S, SW, W,
NW) is considered for each storm. Each of these
(eight) speeds induces a wind effect that depends
on the directional characteristics of the structure’s
aerodynamics. For each storm being considered the
EV of interest is the largest of these (eight) wind
effects. In practice it is convenient to analyze sets of
the square roots of these largest wind effects, rather
than the set of the largest wind effects themselves.
This allows useful comparisons with analyses based
on sets of extreme wind speeds (i.e. to within a
constant of square roots of wind effects) that do not
account for wind directionality [22, p. 311].

Extreme Wind Speeds

Extreme wind speeds used in EV analysis should
be micrometeorologically homogeneous, that is, they
should be (a) recorded over terrain with the same
roughness characteristics over the entire duration of
the record being considered, (b) either recorded at or
converted to the same elevation above ground, and
(¢c) averaged over the same time interval (e.g. 3s
or 1 min) (see Atmospheric dispersion: Complex
terrain).

In the early 1970s two competing models of
extreme wind speeds were widely used: the EV
type II in the US and the EV type I distribution else-
where. For long mean recurrence intervals EV type II
analyses can lead to unrealistically high estimated
speeds, in some cases higher than 100ms™! for sets
not including hurricane or tornado speeds. Extensive
comparisons between results of Monte Carlo simula-
tions from populations with EV I and EV II distribu-
tions on the one hand, and analyses of observed data
at large numbers of meteorological stations on the
other, led to the conclusion that the EV I distribution
is a more realistic model of extreme wind speeds.
However, it was found by Ellingwood et al. [8, p. 6]
that, if it is assumed the EV I distribution holds, then
calculated indices of structural reliability under wind
loading appear to be unrealistically low. Since fail-
ures induced by nonhurricane and nontornado winds
are exceedingly rare, this suggests that the EV I
description of extreme winds may be overly severe.
To the extent that this is the case, and that an EV
distribution is a reasonable model of extreme speeds,
the distribution can only be reverse EV III, which
unlike the EV I and EV I distributions has finite

upper tail. The assumption that the reverse EV II
distribution is an appropriate model of extreme wind
speeds is in fact strongly supported by statistical stud-
ies of extreme wind speeds, based primarily on the
POT approach [15, 21, 26]. Its use in reliability cal-
culations yields results that, unlike those noted by
Ellingwood et al. [8], are credible from a structural
reliability viewpoint [17].

It is likely that better probabilistic models of
extreme wind speeds could be developed if statistics
of thunderstorm and large-scale storm wind speeds
could be developed separately and combined in a
mixed distribution. Efforts in this direction have been
reported, among others, by Holmes and Moriarty [15].

The validity of the reverse EV III distribution is
also suggested strongly by extensive statistical anal-
yses of hurricane wind speeds [14]. However, EV
distribution tails are longer for hurricane than for
nonhurricane wind speeds. This has important impli-
cations on the relative magnitude of safety margins
for hurricane and nonhurricane regions [17, 27].

Tornadoes contain some of the strongest winds
occurring in nature. The realistic probabilistic esti-
mation of extreme tornado wind speeds is a difficult
if not impossible task. First, to date, no tornado
wind speed near the ground has ever been measured
reliably. Second, because in the past tornado obser-
vation capabilities were relatively weak, large num-
bers of tornadoes appear to have been unrecorded,
particularly before the 1970s. Estimates of tornado
occurrence frequency therefore need to be corrected
subjectively. Third, estimates of typical areas swept
within a tornado by winds of various intensities are
also highly uncertain. Fourth, tornado intensity scales
in the US have been based largely—incorrectly—on
the appearance of damage (e.g. on whether a roof
has been blown off). This does not account for the
fact that, depending upon the stringency of the crite-
ria used in the design of the damaged structure, the
same type of damage can imply very different wind
speeds [19]. Estimated probabilities of exceedance of
tornado wind speeds are the result of engineering
judgments and guesses affected by the inadequacy
of current information on tornado occurrences, struc-
ture and wind speeds. Should effective measurement
capabilities be developed in the future, it would take
decades before a new and more reliable tornado
database could be assembled. Nevertheless, measure-
ments will be useful for calibrating new engineering
estimates of the speeds needed to cause observed



4 Meteorological extremes

damage, which in turn would help to correct past
estimates of tornado wind speeds.

Extreme Snow Depths and Loads

Ground snow depth data recorded by weather stations
is subjected to EV analyses similar to those appli-
cable for wind speeds. In engineering applications
information is needed on ground snow load data. In
the past, records have been taken at most US stations
only for ground depth data; only at about 200 stations
have records been taken for both ground depth and
ground load. From such dual sets of data regional
empirical relations between ground snow depth and
load can be developed, on the basis of which statis-
tical estimates of ground snow loads can be obtained
from EV analyses of ground snow depths [7].

Ice Data

Data pertaining to ice is of interest for engineering
purposes. Structures, including wires, cables and
guys, must be designed to withstand the weight of ice
accretions or wind effects due to the presence of ice.
No systematic data on ice loads have been collected
in the US. Data on freezing rain and associated
glaze ice accretion are limited and allow only largely
qualitative estimates. For example, ‘based on limited
data it appears that glaze ice accretions greater than
... 25mm occur approximately once every 10 years
in the Midwest ... Accumulations greater than ...
50 mm are extremely rare in the Midwest’ [1].

Extreme Ocean Waves

Sufficient wave data are unavailable in most cases
at any given location. Estimates of extreme wave
characteristics (heights, spectra, spatial coherence
and directional spread) therefore need to be per-
formed using hindcasting techniques. These tech-
niques develop the requisite estimates from informa-
tion on wind speeds used in conjunction with physical
models of wind—wave interaction and wave structure.
Unfortunately, much of the extreme wind speed infor-
mation collected over the past 100 years is of poor
quality: anemometers on ships were often placed in
obstructed areas, and ships tend to stay away from
high winds. Typical efforts to model extreme wind

speeds and the associated waves are summarized
in [16] (see Hydrological extremes).
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